1,3-Dipolar Cycloaddition of 3-Azido-3-deoxy-1,2:5,6-di-O-isopropylidene- α-D-glucofuranose and $\mathrm{C}_{60} \dagger$

José Marco-Contelles,** Nadine Jagerovic ${ }^{\boldsymbol{b}}$ and C. Alhambra ${ }^{\boldsymbol{a}}$
${ }^{a}$ Instituto de Química Orgánica General, Laboratorio de Radicales Libres (CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
${ }^{\text {b/ Instituto de Química Médica (CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain }}$

The thermal cycloaddition of azido sugar $\mathbf{3}$ with C_{60} gives the chiral azafulleroid $\mathbf{4}$ in 2.55% yield (8% based in recovered C_{60}).

Since the first report from Vasella's laboratory ${ }^{1}$ on the synthesis of deprotected, spiro linked C-glycosides of C_{60}, the synthesis and reactivity of new glycofullerenes have been almost neglected. This is really surprising regarding the potential, large mass of new molecular architectures possible from the reactivity between sugars and C_{60}. In fact, the simple and easy manipulation (owing to the increased solubility in common solvents) and the interesting biological properties that have been claimed in some of the new polyfunctionalized fullerene derivatives ${ }^{2}$ have been an important motive to search for diversely substituted C_{60} molecular frameworks.

Two recent publications on the cycloaddition of per- O-acetyl glycosyl azides ${ }^{3 a}$ and methyl 2-azido-2-deoxy-$3,4-O$-isopropylideneerythronate ${ }^{3 b}$ to C_{60}, and the current interest of some of us in the reaction of azides with $\mathrm{C}_{60},{ }^{4}$ prompt us to report here the 1,3-dipolar cycloaddition of the azido sugar 3^{5} (3-azido-3-deoxy-1,2:5,6-di- O-iso-propylidene- α-D-glucofuranose) and C_{60}.

1

2

The reaction of azides with C_{60} has been extensively analyzed and documented in the literature. ${ }^{6,7}$ Two types of monoadducts $\mathbf{1}^{6 a}$ and $\mathbf{2}^{7}$ are obtained depending on reaction conditions. For example, under thermal conditions, alkyl azides preferentially add at the ring junction between five- and six-membered rings ([5,6]-junction) to give 1, whereas N-alkoxycarbonyl azides predominantly afford compounds 2. The iminofullerenes (azafulleroids) 2 are of special interest because to date they are the only fullerene derivatives which provide chemospecific cycloaddition reactions, ${ }^{8}$ a key step for the formation of heterofullerenes. ${ }^{9}$ The first step of the reaction is a $[3+2]$-cycloaddition to a [6,6]-double bond with the formation of a triazoline which on thermolysis gives the azafulleroid $1 .{ }^{10}$ In the case of unstable azafulleroids (those containing N-phenyl or N-alkoxycarbonyl substituents) the thermolysis leads to the thermodynamically stable [6,6]-bridged isomers. ${ }^{11}$

[^0]3-Azido-3-deoxy-1,2:5,6-di- O-isopropylidene- α-D-glucofuranose 3^{5} was reacted with fullerene in chlorobenzene, at $130^{\circ} \mathrm{C}$ for 30 h to give a new product 4 (Scheme 1) in 2.55% yield (8% based in recovered C_{60}). The reaction conditions are not optimised. This low yield probably would indicate that a large amount of bis-adducts should be formed, ${ }^{12}$ but we could not detect or isolate them. Note that no reaction took place at $60^{\circ} \mathrm{C}$, and at reflux, the reaction was very slow at short reaction times ($c a .10 \mathrm{~h}$). When using 1 -chloronaphthalene as solvent no reaction was observed. The structure of product 4 was established by analytical and spectroscopic data. A correct microanalysis for $\mathrm{C}_{72} \mathrm{H}_{19} \mathrm{NO}_{5}$ established the product has to be a monoadduct. The UV-VIS spectrum was very similar to that of C_{60}. FAB MS showed the typical M^{+}cluster with loss of the sugar moiety to give $\left[\mathrm{C}_{60} \mathrm{~N}\right]^{+}$and $\mathrm{C}_{60^{+}}$. The ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum of the sugar part of the molecule is very similar to that of the sugar azide $\mathbf{3}$ with a small downfield shift due to the influence of the carbon sphere ${ }^{6 a}$ [observe that H-1 and H-2 appear at 5.86 (6.12, $\Delta+0.26 \mathrm{ppm})$ and $4.62(5.06, \Delta+0.44 \mathrm{ppm})$, respectively, on going from product 3 to 4]. The ${ }^{13} \mathrm{C}$ NMR spectrum of 4 exhibits the signals for the sugar residue at $\delta 112.08$ and $109.57\left\{2 \times\left[-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-\right]\right\}, 104.84(\mathrm{C}-1), 83.90$, 82.67, 72.30, 68.95, 67.12 (C-2, C-3, C-4, C-5, C-6), 26.81, 26.66, 26.42, $25.67\left\{2 \times\left[-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-\right]\right\}$, as well as 32 peaks in the aromatic region in the range δ 148-133. Because all the fullerene carbons were in the sp^{2} region of the spectrum (no $\mathrm{C}_{60} \mathrm{sp}^{3}$ signals at $\delta c a .80$ and no $C_{2 \mathrm{v}}$ symmetry is present, compound $\mathbf{4}$ is a $[5,6] \pi$ monoadduct, ruling out the aziridine structure. Note also that product 4 was soluble in common organic solvents as CDCl_{3}, for instance, confirming that the sugar moiety around the fullerene residue has modified considerably its solubility properties.

In summary, we have described the synthesis and characterization of a chiral azafulleroid from the cycloaddition of a C-3 azido sugar in a furanose template and C_{60}. It belongs to a new family of glycofullerenes. Work is now in progress in order to apply this protocol to new sugar derivatives, study the reactivity and analyze the biological profile of these molecules.

Scheme 1

Experimental

Reactions were monitored by TLC using precoated silica gel alumina plates containing a fluorescent indicator (Merck, 5539). Detection was done by UV (254 nm) followed by charring with sulfuric-acetic acid spray, 1% aqueous potassium permanganate solution of 0.5% phosphomolybdic acid in $95 \% \mathrm{EtOH}$. Anhydrous MgSO_{4} was used to dry organic solutions during workups. Flash column chromatography was performed using Kieselgel 60 (230-400 mesh, Merck). The melting point of $\mathbf{4}$ was determined in a Kofler apparatus and is uncorrected. Optical rotation was determined with a Perkin-Elmer 257 instrument. The ${ }^{1} \mathrm{H}$ NMR spectrum was recorded with a Varian VXR-300S spectrometer.

1,6-[N-(3-Deoxy-1,2:5,6-di-O-isopropylidene- α-D-glucofuranos-3yl)] aza[60]fulleroid 4.- $\mathrm{C}_{60}(404 \mathrm{mg}, 0.561 \mathrm{mmol})$ was dissolved in chlorobenzene (35 mL) using a sonicator. Then the azide $\mathbf{3}^{5}(160 \mathrm{mg}$, 0.561 mmol) was added to the fullerene solution. The reaction mixture was stirred at $130-135^{\circ} \mathrm{C}$ for 30 h . The solvent was evaporated under vacuum and the residue was chromatographed on silica gel eluting with toluene and toluene-methanol $(95: 5)$ mixtures, to give unreacted $\mathrm{C}_{60}(275 \mathrm{mg})$ and compound 4 as a black solid. Yield: $14 \mathrm{mg}\left(2.55 \%\right.$ yield; 8% based in recovered C_{60}); IR (KBr) v / cm^{-1} 1426, 1032; $[\alpha]_{\mathrm{D}}^{25}-60\left(c 0.025, \mathrm{CHCl}_{3}\right)$; UV-VIS $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 262$, $330 \mathrm{~nm} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.13\left(\mathrm{~d}, J_{1,2}=3.81 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.07(\mathrm{~d}, \mathrm{~d}$, $J_{1,2}=3.81, \quad J_{3,4}=3.00 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{H}-2, \quad \mathrm{H}-3$), 4.59 (td, $\left.J_{5,6}=J_{5,6^{\prime}}=6.41, J_{4,5}=9.00 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.38(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-4), 4.27$ (dd, $\left.J_{6,6^{\prime}}=8.49 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.96$ (dd, $1 \mathrm{H}, \mathrm{H}^{\prime}$), 1.59, 1.41, 1.39, $1.24(\mathrm{~s}, \mathrm{~s}, \mathrm{~s}, \mathrm{~s}, 12 \mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 147.44,144.68,144.39,144.04$, $143.88,143.60,143.60,143.36,143.06,142.83,142.75,142.48,142.38$, $141.80,141.70,141.34,141.28,140.47,140.03,139.90,139.84,139.09$, $138.92,138.80,138.75,137.70,137.59,137.36,135.74,135.05,134.99$, $134.60,112.08,109.57,104.84,83.90,82.67,72.30,68.95,67.12$, 26.81, 26.66, 26.42, 25.67; FAB MS (NBA) $m / z 978$ (M+1+, 28\%), $734\left(\mathrm{C}_{60} \mathrm{~N}^{+}, 13 \%\right), 720\left(\mathrm{C}_{60^{+}}, 100 \%\right)$.
J. M.-C thanks CAM for financial support and to Dr. Angeles Martínez-Grau (Lilly, S.A.) for suggestions and reading the manuscript.

Received, 12th July 1999; Accepted, 10th August 1999 Paper E/9/05639D

References

1 A. Vasella, P. Uhlmann, C. A. Waldraff, F. Diederich and C. Thilgen, Angew. Chem., Int. Ed. Engl., 1992, 60, 532; P. Uhlmann, E. Harth, A. B. Naughton and A. Vasella, Helv. Chim. Acta, 1994, 77, 2335.
2 A. W. Jensen, S. R. Wilson and D. L. Schuster, Bioorg. Med. Chem., 1996, 4, 767.
3 (a) A. Yashiro, Y. Nishida, M. Ohno, S. Eguchi and K. Kobayashi, Tetrahedron Lett., 1998, 39, 9031; (b) Y. H. Ahn, J. S. Yoo and S. H. Kim, Synth. Commun., 1998, 28, 4201.

4 N. Jagerovic, J. Elguero and J. L. Aubagnac, Tetrahedron, 1996, 52, 6733.
5 A. C. Richardson, Methods Carbohydr. Chem., 1972, 6, 218.
6 (a) M. Prato, Q. Chan and F. Wudl, J. Am. Chem. Soc., 1993, 115, 1148; (b) T. Grösser, M. Prato, V. Lucchini, A. Hirsch and F. Wudl, Angew. Chem., Int. Ed. Engl., 1995, 35, 1343; (c) G. Schick, A. Hirsch, H. Mauser and T. Clark, Chem. Eur. J., 1996, 2, 935; (d) G. Schick and A. Hirsch, Tetrahedron, 1998, 54, 4283.
7 J. Averdung and J. Mattay, Tetrahedron, 1996, 52, 5407 and references therein.
8 J. C. Hummelen, M. Prato and F. Wudl, J. Am. Chem. Soc., 1995, 117, 7003.
9 J. C. Hummelen, B. Knight, J. Pavlovich, R. González and F. Wudl, Science, 1995, 269, 1554.
10 T. Suzuki, Q. Li, K. C. Khemani and F. Wudl, J. Am. Chem. Soc., 1992, 114, 7301.
11 F. Wudl, Acc. Chem. Res., 1992, 25, 157.
12 The authors thank a referee for this suggestion.

[^0]: * To receive any correspondence.
 \dagger This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1999, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

